Печать

ТЕМА 3.3. Средства коллективной защиты от основных факторов производственной среды

Posted in Охрана труда - Охрана труда (А.Д. Овсянкин, Г.З. Файнбург)

ТЕМА 3.3. Средства коллективной защиты от основных факторов производственной среды

3.3.1. Воздушная среда – важнейшая часть окружающей работника производственной среды
3.3.2. Промышленная вентиляция
3.3.3. Защита от шума
3.3.4. Вибрация и защита от нее
3.3.5. Освещение
3.3.6. Лазерное излучение
3.3.7. Неионизирующие излучения
3.3.8. Ионизирующие излучения и защита от них

3.3.1. Воздушная среда – важнейшая часть окружающей работника производственной среды

Воздушная среда из всех элементов, составляющих среду обитания и деятельности человека, является важнейшей. Из всех сред, окружающих человека, она одна служит действительно “окружающей средой”, ибо непосредственно окружает человеческий организм (за исключением случаев неестественного для человека нахождения под водой). Но не только этим воздушная среда выделяется из остальных сред. Человеческий организм нуждается в кислороде воздуха постоянно и на протяжении всей своей жизни, которая просто невозможна без дыхания.
Природный воздух представляет собой сложную динамическую систему, образованную различными газами (и парами) и находящимися во взвешенном состоянии мельчайшими твердыми и жидкими частицами – аэрозолями (пыль, дым, туман, вирусы, бактерии, споры, пыльца).
“Чистый воздух”, т.е. смесь основных газов, лишенная аэрозольных и газообразных “загрязнений”, является научной абстракцией, идеализацией, не встречающейся в природе, но необходимой для понимания всех других реальных состояний воздушной среды.
Под загрязнением воздуха понимается прямое или косвенное введение в него любого вещества в таком количестве, которое изменяет качество и состав чистого атмосферного воздуха, нанося вред людям, живой и неживой природе.
Газообразные загрязнения воздуха производственной среды связаны с испарением летучих жидкостей, утечками газа из резервуаров, образование газов при горении, обработке материалов и т.п.
Важнейшим газообразным веществом, определяющим качество воздуха, является водяной пар. Чем сильнее нагрет воздух, тем большее количество водяного пара он может содержать. Отношение содержащегося водяного пара к тому предельному количеству, которое может содержаться в воздухе при данной температуре, называется относительной влажностью. Она характеризует “заполненность” воздуха водяным паром и тем самым характеризует способность воды испаряться. Охлаждение влажного воздуха вызывает конденсацию паров – образуется туман и капельки (конденсат) на всех холодных поверхностях.
Важнейшей характеристикой воздушной среды является барометрическое давление, ибо разница барометрического давления и давления воздуха в альвеолах легких определяет величину газообмена. Барометрическое давление считается и называется нормальным на уровне моря (одна атмосфера) и экспоненциально убывает с высотой.
Помимо газового состава и барометрического давления, важнейшей характеристикой воздушной среды служит температура воздуха. В сочетании с подвижностью (скоростью) движения воздуха относительно тела человека температура воздуха определяет характер теплообмена – нагрев или охлаждение тела человека. Заметим, что, строго говоря, нагрев или охлаждение тела определяются еще соотношением температуры поверхности тела и температуры окружающих тел, составляющих лучистый нагрев. Охлаждение тела зависит также от потоотделения, в свою очередь зависящего от относительной влажности воздуха.
Температура, подвижность и относительная влажность воздуха, а также лучистый теплообмен определяют тепловой комфорт/дискомфорт человека, находящегося в воздушной среде.
Состояние воздушной среды, характеризующееся температурой, подвижностью и относительной влажностью воздуха, определенным лучистым теплообменом и барометрическим давлением называется микроклиматом (иногда производственным микроклиматом).
Поддержание микроклимата рабочего места в пределах гигиенических норм – важнейшая задача охраны труда.
Подчеркнем, что процесс формирования качества воздушной среды в помещениях принципиально отличается от такого же процесса в открытой атмосфере отсутствием ультрафиолетового излучения, частичным или полным экранированием от геомагнитных полей (особенно в зданиях из железобетонных конструкций), измененностью электрических свойств воздуха, практическим отсутствием высших растений, относительной малостью соотношения объема воздушной среды и площади поверхностей, через которые происходит процесс загрязнения.
Все это существенно сказывается на качестве воздушной среды помещений, ведет к тому, что, как правило, воздух в помещениях, особенно производственных, оказывается в десятки, а то и в сотни раз хуже, чем “на улице”. Кроме того, наличие вышеперечисленных факторов затрудняет поддержание характеристик воздушной среды в приемлемых для человеческого организма значениях, требует применения специальных очистительных устройств и/или средств индивидуальной защиты.

 


 

3.3.2. Промышленная вентиляция

Напомним, что вентиляция – это обмен воздуха в помещении для удаления избытков теплоты, влаги, вредных и других загрязняющих воздух веществ с целью обеспечения допустимых микроклиматических условий и чистоты воздуха.
В условиях производства вентиляция различается:
- по способу перемещения воздуха – естественная и механическая;
- по форме организации воздухообмена – местная и общеобменная.
Типы вентиляционных установок бывают:
- вытяжные (предназначенные для удаления воздуха) – местные и общие;
- приточные (осуществляют подачу воздуха) – местные (воздушные души, завесы, оазисы) и общие (рассеянный или сосредоточенный приток).
При естественной вентиляции воздухообмен происходит за счет разности температур, а, следовательно, и удельной массы воздуха внутри производственного помещения и вне его, т.е. под влиянием теплового напора, а также за счет воздействия ветра (ветровой напор). Действие этих факторов тем больше, чем больше разница температур в верхней и нижней зонах помещения и чем больше высота помещения.
Естественная вентиляция производственных помещений может быть неорганизованной и организованной.
При неорганизованной вентиляции (проветривании) поступление и удаление воздуха происходит через окна, форточки, специальные проемы, а также через неплотности наружных ограждений (инфильтрация).
Организованная (регулируемая) естественная вентиляция производственных помещений называется аэрацией.
В отличие от естественной, механическая вентиляция позволяет производить предварительную обработку приточного воздуха – увлажнение, нагрев или охлаждение и очистку от пыли, газов и других примесей.
Общеобменная вентиляция применяется в тех случаях, когда вредные вещества, избыточное (преимущественно конвекционное) тепло и влага выделяются рассредоточено по всему рабочему помещению и удалить их с помощью местных отсосов технически не представляется возможным, а также в тех случаях, когда необходимо разбавить до ПДК остатки воздуха, не удаляемого местными отсосами.
Приточный воздух необходимо подвергать обработке: подогреву или охлаждению, очистке от пыли, а в некоторых случаях – увлажнению.
Рециркуляция воздуха в системах приточно-вытяжной вентиляции применяется в холодное и переходное время года в целях экономии тепла, затрачиваемого на подогрев воздуха. При рециркуляции часть воздуха, удаляемого из помещения после соответствующей очистки от вредных веществ, снова направляется в помещение.
Кондиционирование воздуха – создание и автоматическое регулирование в помещениях заданных параметров микроклимата и санитарно-гигиенических параметров (температуры, влажности, подвижности воздуха). Системами кондиционирования должен подаваться воздух, очищенный от пыли. Иногда предъявляются требования по очистке воздуха от бактерий, по его ионизации, дезодорации или ароматизации.
Объем воздуха, удаляемый из помещения вытяжными вентиляционными установками, должен компенсироваться организованным притоком чистого воздуха. Неорганизованный приток наружного воздуха для возмещения вытяжки в холодный период года допускается 1 раз в час, если при этом не будет переохлаждения воздуха и образования тумана.
Особое значение имеет эффективно работающая система вентиляции на производствах с использованием взрывоопасных веществ. “Правила устройства, изготовления, монтажа, ремонта и безопасной эксплуатации взрывозащищенных вентиляторов” утверждены постановлением Госгортехнадзора России от 10 июня 2003 г. № 84 (ПБ 03-590-03).

 


 

3.3.3. Защита от шума

С физической точки зрения шум представляет собой смешение звуков различных частот и интенсивности, распространяющихся через твердые, жидкие и газообразные среды.
С физиологической точки зрения шумом является всякий мешающий человеку звук и / или сочетание звуков.
Слышимый диапазон звуков (шумов) от 20 до 20 000 Гц. Ниже 20 Гц – область инфразвуков, выше 20 000 Гц – область ультразвуков.
Ухо человека может воспринимать и анализировать звуки в широком диапазоне частот и интенсивностей. Границы частотного восприятия существенно зависят от возраста человека и состояния органа слуха. У лиц среднего и пожилого возраста верхняя граница слышимой области понижается до 12–10 кГц.
Область слышимых звуков ограничена двумя кривыми: нижняя кривая определяет порог слышимости, т.е. силу едва слышимых звуков различной частоты, верхняя – порог болевого ощущения, т.е. такую силу звука, при которой нормальное слуховое ощущение переходит в болезненное раздражение органа слуха.
Субъективно воспринимаемую интенсивность звука называют его громкостью (физиологической силой звука). Громкость является функцией интенсивности звука, частоты и времени действия физиологических особенностей слухового анализатора. С ростом силы звука ухо реагирует приблизительно одинаково на звуки разных частот звукового диапазона.
В качестве характеристик постоянного шума на рабочих местах, а также для определения эффективности мероприятий по ограничению его неблагоприятного влияния принимаются уровни звуковых давлений (в дБ) в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 1000; 2000; 4000 и 8000 Гц.
При гигиенической оценке шумы классифицируют по характеру спектра и по временным характеристикам.
По характеру спектра шумы подразделяются на:
- широкополосные, с непрерывным спектром шириной более одной октавы;
- тональные, в спектре которых имеются выраженные дискретные тона.
Тональный характер шума для практических целей (при контроле его параметров на рабочих местах) устанавливается измерением в третьоктавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.
По временным характеристикам шумы подразделяются на:
- постоянные, уровень звука которых за 8-часовой рабочий день (рабочую смену) изменяется во времени не более чем на 5 дБА при измерениях по шкале А шумомера;
- непостоянные, уровень звука которых за 8-часовой рабочий день (рабочую смену) изменяется во времени более чем на 5 дБА при измерениях по шкале А шумомера.
Непостоянные шумы подразделяются, в свою очередь, на:
- колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;
- прерывистые, уровень звука которых ступенчато изменяется на 5 дБА и более, причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более;
- импульсные, состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с. При этом уровни звука в дБА, измеренные соответственно на временных характеристиках “импульс” и “медленно” шумомера, отличаются не менее чем на 7 дБА.
Шум, являясь информационной помехой для высшей нервной деятельности в целом, оказывает неблагоприятное влияние на протекание нервных процессов, увеличивает напряжение физиологических функций в процессе труда, способствует развитию утомления и снижает работоспособность организма.
Среди многочисленных проявлений неблагоприятного воздействия шума на организм можно выделить снижение разборчивости речи, неприятные ощущения, развитие утомления, снижение производительности труда и, наконец, появление шумовой патологии.
Среди многообразных проявлений шумовой патологии ведущим клиническим признаком является медленно прогрессирующее снижение слуха.
Однако кроме специфического действия на органы слуха, шум оказывает и неблагоприятное общебиологическое действие, вызывая сдвиги в функциональных системах организма. Так, под влиянием шума возникают вегетативные реакции, обусловливающие нарушение периферического кровообращения за счет сужения капилляров, а также изменение артериального давления (преимущественно повышение). Шум вызывает снижение иммунологической реактивности и общей сопротивляемости организма, что проявляется в повышении уровня заболеваемости с временной утратой трудоспособности (в 1,2–1,3 раза при увеличении уровня производственного шума на 10 дБ).
Для снижения шума в производственных помещениях применяют различные методы коллективной защиты: уменьшение уровня шума в источнике его возникновения; рациональное размещение оборудования; борьбу с шумом на путях его распространения, в том числе изменение направленности излучения шума, использование средств звукоизоляции, звукопоглощения и установку глушителей шума, акустическую обработку поверхностей помещения.
На рабочих местах промышленных предприятий защита от шума должна обеспечиваться строительно-акустическими методами:
- рациональным, с акустической точки зрения, решением генерального плана объекта, рациональным архитектурно-планировочным решением зданий;
- применением ограждающих конструкций зданий с требуемой звукоизоляцией;
- применением звукопоглощающих конструкций (звукопоглощающих облицовок, кулис, штучных поглотителей);
- применением звукоизолирующих кабин наблюдения и дистанционного управления;
- применением звукоизолирующих кожухов на шумных агрегатах;
- применением акустических экранов;
- применением глушителей шума в системах вентиляции, кондиционирования воздуха и в аэрогазодинамических установках;
- виброизоляцией технологического оборудования.
Акустическое благоустройство, создание оптимальных акустических условий в аудиториях, зрительных залах театров, кинотеатров, дворцов культуры, спортивных залах, залах ожидания и операционных залах железнодорожных, аэро- и автовокзалов должно обеспечиваться:
- рациональным объемно-планировочным решением зала (соотношение объемно-линейных размеров);
- применением звукопоглощающих материалов и конструкций;
- применением звукоотражающих и звукорассеивающих конструкций;
- применением ограждающих конструкций, обеспечивающих требуемую звукоизоляцию от внутренних и внешних источников шума;
- применением глушителей шума в системах принудительной вентиляции и кондиционирования воздуха;
- применением систем звукоусиления, оповещения и передачи информации.
Для защиты от шума также широко применяются различные средства индивидуальной защиты: противошумные наушники, закрывающие ушную раковину снаружи; противошумные вкладыши, перекрывающие наружный слуховой проход или прилегающие к нему; противошумные шлемы и каски; противошумные костюмы (ГОСТ 12.1.029-80. ССБТ “Средства и методы защиты от шума. Классификация”).
При разработке нового и модернизации действующего оборудования, приборов и инструмента обязательно предусматриваются меры по ограничению неблагоприятного воздействия ультразвука на работников:
- снижение интенсивности ультразвука в источнике образования за счет рационального подбора мощности оборудования с учетом технологических требований;
- при проектировании ультразвуковых установок не рекомендуется выбирать рабочую частоту ниже 22 кГц, чтобы уменьшить действие высокочастотного шума;
- оснащение ультразвуковых установок звукоизолирующими кожухами или экранами, при этом в кожухе не должно быть отверстий и щелей. Повышение эффективности звукопоглощающего кожуха может быть достигнуто размещением внутри кожуха звукопоглощающего материала или резонаторных поглотителей;
- размещение ультразвукового оборудования в звукоизолированных помещениях или кабинах с дистанционным управлением;
- оборудование ультразвуковых установок системами блокировки, отключающей преобразователи при открывании кожухов;
- создание автоматического ультразвукового оборудования для мойки тары, очистки деталей и т.д.;
- изготовление приспособлений для удержания источника ультразвука или обрабатываемой детали;
- применение специального рабочего инструмента с виброизолирующей рукояткой.
Снижение интенсивности инфразвука, генерируемого технологическими процессами и оборудованием, следует достигать за счет применения комплекса мероприятий, включающих:
- ослабление мощности инфразвука в источнике его образования на стадии проектирования, конструирования, проработки архитектурно-планировочных решений, компоновки помещений и расстановки оборудования;
- изоляцию источников инфразвука в отдельных помещениях;
- использование кабин наблюдения с дистанционным управлением технологическим процессом;
- уменьшение интенсивности инфразвука в источнике путем введения в технологические цепочки специальных демпфирующих устройств малых линейных размеров, перераспределяющих спектральный состав инфразвуковых колебаний в область более высоких частот;
- укрытие оборудования кожухами, имеющими повышенную звукоизоляцию в области инфразвуковых частот;
- отделку поверхностей производственных помещений конструкциями, имеющими высокий коэффициент звукопоглощения в области инфразвуковых частот;
- снижение вибрации оборудования, если инфразвук имеет вибрационное происхождение;
- установку специальных, снижающих инфразвук глушителей на воздухозаборные шахты, выбросные отверстия компрессоров и вентиляторов;
- увеличение звукоизоляции ограждающих конструкций помещений в области инфразвуковых частот путем повышения их жесткости с помощью применения неплоских элементов;
- заделку отверстий и щелей в ограждающих конструкциях производственных помещений;
- использование глушителей инфразвука интерференционного типа.

 


 

3.3.4. Вибрация и защита от нее

Вибрацией называется механическое колебательное движение, заключающееся в перемещении тела как целого. Вибрация, в отличие от звука, не распространяется в виде волн сжатия/разряжения, а передается только при механическом контакте одного тела с другим.
В природе вибрация практически не встречается, но, к сожалению, очень часто возникает в технических устройствах. Кроме того, в технике вибрацию специально используют, например при вибрационной транспортировке.
Имеется три основных механизма возбуждения вибрации. Первый связан с силами инерции и криволинейностью пути; он, например, вызывает вибрацию наземного транспорта, существенно возрастающую при движении по неровностям агрофона. Второй обусловливается неуравновешенными силами ударного действия; он, например, вызывает вибрацию при ковке, штамповке, клепке и т.п. Третий связан с несовпадением геометрического центра и центра масс вращающейся системы и вызывает вибрацию в механизмах, где есть вращающие части.
Вибрация, воздействующая на человека через опорные поверхности, оказывает влияние на весь организм и называется общей. (Поверхность, на которой человек стоит, сидит или лежит, называется опорной.) Общая вибрация, захватывающая все тело, наблюдается на всех видах транспорта и при работе в непосредственной близости от источника вибрации (промышленного оборудования).
Вибрация, воздействующая не через опорные поверхности, охватывает только часть организма и называется локальной. Практически вся она является вибрацией, передающейся через руки, и возникает там, где вибрационные инструменты или обрабатываемые детали контактируют с руками или пальцами.
Особым подвидом общей вибрации является укачивание, связанное с низкочастотными колебаниями тела и некоторыми типами его вращения на транспорте.
Влияние общей вибрации обычно наиболее заметно в диапазоне от 0,5 до 100 Гц. Локальная вибрация, передающаяся через руки, оказывает вредное воздействие на более высоких частотах – 1000 Гц и более. Частоты ниже 0,5 Гц могут вызывать укачивание.
Реальное вибрационное движение, как правило, состоит из множества простейших гармонических колебаний и имеет сложный спектр. Знание спектра необходимо для оценки влияния вибрации на организм человека, которое зависит от частоты вибрации.
Человек реагирует на вибрацию в зависимости от общей продолжительности ее воздействия.
Наибольшее воздействие общей вибрации сказывается на процессах получения входящей информации (в основном зрительной из-за колебаний глазных яблок и головы) и на процессах передачи информации (непрерывный контроль деятельности колеблющихся рук).
Долговременное воздействие весьма интенсивной общей вибрации (например, на трактористов) может нежелательным образом сказываться на позвоночнике и увеличивать риск возникновения изменения позвонков и дисков.
Методы и средства коллективной защиты от вибрации. Для борьбы с вибрацией машин и оборудования и защиты работающих от вибрации используют различные методы. Борьба с вибрацией в источнике ее возникновения связана с установлением причин появления механических колебаний и их устранением.
Для снижения вибрации широко используют эффект вибродемпфирования – превращение энергии механических колебаний в другие виды энергии, чаще всего в тепловую.
Для предотвращения общей вибрации используют установку вибрирующих машин и оборудования на самостоятельные виброгасящие фундаменты.
Для ослабления передачи вибрации от источников ее возникновения полу, рабочему месту, сиденью, рукоятке и тому подобному широко применяют методы виброизоляции.
Виброизоляцией называется уменьшение степени передачи вибрации от источника к защищаемым объектам.
Виброизоляцию можно оценивать через коэффициент передачи:

Kn = 1/f/f0 – 1, где:

f и f0 – частота возмущающей силы и собственная частота системы при наличии виброизолирующего слоя (Гц).
Чем выше частота возмущающей силы по сравнению с собственной, тем больше виброизоляция. При f < f0 возмущающая сила целиком передается основанию. При f = f0 происходит резонанс и резкое усиление вибрации, а при f > 2 f0 обеспечивается виброизоляция, пропорциональная коэффициенту передачи.
Виброизоляция используется при виброзащите от действия напольных и ручных механизмов.
Виброгашением называется гашение вибрации за счет активных потерь или превращения колебательной энергии в другие ее виды, например в тепловую, электрическую, электромагнитную.
Наиболее действенным средством защиты человека от вибрации является устранение непосредственного контакта с вибрирующим оборудованием. Осуществляется это путем применения дистанционного управления, промышленных роботов, автоматизации и замены технологических операций.
Снижение неблагоприятного воздействия вибрации ручных механизированных устройств на операторов достигается как путем уменьшения интенсивности вибрации непосредственно в ее источнике (за счет конструктивных усовершенствований), так и средствами внешней виброзащиты, которые представляют собой упругодемпфирующие материалы и устройства, размещенные между источником вибрации и руками оператора.
В качестве средств индивидуальной защиты работающих используют специальную обувь на массивной резиновой подошве. Для защиты рук служат рукавицы, перчатки, вкладыши и прокладки, которые изготовляют из упругодемпфирующих материалов.
Важным фактором для снижения опасного воздействия вибрации на организм человека является правильная организация режима труда и отдыха, постоянное медицинское наблюдение за состоянием здоровья, лечебно-профилактические мероприятия – такие, как гидропроцедуры (теплые ванночки для рук и ног), массаж рук и ног, витаминизация и др.

 


 

3.3.5. Освещение

Практически всю информацию из внешнего мира человек получает с помощью зрения. Поэтому роль света и цвета для человеческой деятельности огромна.
Восприятие света является важнейшим элементом нашей способности действовать, поскольку позволяет оценивать местонахождение, форму и цвет окружающих нас предметов.
Все окружающие нас тела и предметы делятся на светящиеся и несветящиеся. Светящиеся природные и искусственно созданные тела испускают электромагнитные излучения с различными длинами волн, но только излучения с длиной волны от 380 до 780 нм вызывают у нас ощущение света и цвета. Поэтому светом называют характеристику светового стимула, создающего определенное зрительное ощущение, а излучения указанного диапазона длин волн – видимым участком спектра. При действии на глаз излучений с длиной волны меньше 380 нм (инфракрасное излучение) и больше 780 нм (ультрафиолетовое излучение) световых и цветовых ощущений не возникает.
Все излучения делятся на два типа: монохроматические и сложные. Монохроматическое излучение представляет собой излучение какой-либо одной длины волны. Сложные излучения состоят из нескольких монохроматических, вплоть до всех излучений видимого участка спектра.
Если тело испускает световой поток, содержащий все излучения от 380 до 780 нм, и притом мощность этих излучений одинакова, цвет этого тела воспринимается как белый.
Пропуская через призму белый свет, его можно разложить в спектр монохроматических излучений, которые вызывают ощущения различных цветов, от красного до фиолетового. Если все многообразие видимых нами спектральных цветов разделить на семь групп, то мы получим ряд: красный – оранжевый – желтый – зеленый – голубой – синий – фиолетовый. Разделение спектра на семь цветовых зон является чисто условным, поскольку глаз различает в спектре громадное количество промежуточных оттенков непрерывной последовательности цветов спектра.
Подавляющее большинство окружающих нас предметов не имеет собственного свечения. Собственного света они не излучают, и мы можем видеть их только в отраженном ими свете.
Все цвета делятся на две группы: ахроматические и хроматические. К ахроматическим относятся белые, серые и черные цвета. Все остальные цвета являются хроматическими.
Всякий светящийся предмет излучает энергию, которая в форме электромагнитных волн распространяется в разные стороны.
Для оценки зрительного восприятия потока световой энергии используются понятия: “световой поток”, “сила света”, “яркость”, “освещенность”.
Световым потоком называют поток световой энергии, оцененный по его воздействию на глаз человека.
Силой света называют пространственную плотность светового потока, т.е. отношение светового потока точечного источника света к величине телесного угла, в котором этот поток распространяется.
Яркостью (или фотометрической яркостью) называют силу света в определенном направлении (в глаз наблюдателя), отнесенную к единице площади видимой светящейся поверхности, расположенной перпендикулярно к направлению распространения света.
Освещенностью называют поверхностную плотность светового потока, т.е. световой поток, отнесенный к единице площади освещаемой поверхности.
Контрастом называют разницу яркостей объекта наблюдения и его окружения (фона) или между различными частями объекта.
Ахроматические цвета характеризуют коэффициентом отражения, т.е. отношением отраженного светового потока к падающему. Хроматические цвета характеризуют тремя колориметрическими величинами: цветовым тоном (доминирующей длиной волны), чистотой (насыщенностью) цвета и яркостью или светлотой. Яркость определяется для характеристики цвета светящихся тел, светлота (или относительная яркость) – для характеристики цвета несветящихся тел.
Для монохроматического излучения цветовой тон – это длина волны испускаемого им излучения.
К функциям зрения, особенно необходимым для безопасности и результативности труда, относятся: контрастная чувствительность, острота зрения, быстрота различения деталей, устойчивость ясного видения, цветовая чувствительность.
Способность глаза различать минимальные значения разности яркости объекта (детали) и фона называется контрастной (различительной) чувствительностью. Установлена зависимость контрастной чувствительности от условий освещения объекта и яркости, к которой глаз предельно адаптировался.
Острота зрения – это максимальная способность различать отдельные объекты. Нормальный глаз может различить две точки, видимые под углом в 1о. Большое влияние на остроту зрения оказывает освещенность. С ростом освещенности до определенного уровня растет и острота зрения.
Определенная роль при выполнении зрительной работы принадлежит такой зрительной функции, как цветоощущение. Значение этой функции возрастает при выполнении производственных операций, связанных с необходимостью цветоразличения.
Наиболее благоприятные условия цветоощущения создаются при естественном (солнечном) освещении (поскольку оно достаточно велико), а также при искусственном освещении люминесцентными лампами с исправленной цветностью.
Важную роль в различении играет цветовой контраст. Наибольший контраст имеют синий цвет на белом фоне, черный цвет на желтом фоне и красный цвет на белом фоне. Поэтому запрещающий знак светофоров связан с красным цветом, а ограждения безопасности делают “зеброй” черного и желтого цветов. Эти же цвета используются и на предупреждающих знаках.
Для успешной зрительной работы в условиях изменчивости освещенности большое значение имеет так называемая зрительная адаптация, т.е. приспособление глаза к условиям освещения. Благодаря процессу адаптации зрительный анализатор обладает способностью работать в широком диапазоне освещенностей.
Различают световую и темновую адаптации. Световая адаптация – приспособление глаза к работе в условиях высокой яркости поля зрения. Световая адаптация при повышении яркостей в поле зрения происходит быстро – в течение 5–10 мин; темновая адаптация – приспособление глаза к более низким яркостям поля зрения – развивается медленнее (от 30 мин до 2 ч). Процесс адаптации сопровождается фотохимическими и нервными процессами, перестройкой рецептивных полей в сетчатке глаза, изменением диаметра зрачка (зрачковый рефлекс). Частые изменения уровней яркости приводят к снижению зрительных функций, развитию утомления вследствие переадаптации глаза. Зрительное утомление, связанное с напряженной работой и частой переадаптацией, приводит к снижению зрительной и общей работоспособности.
Каждый вид деятельности, связанный с необходимостью различения того или иного объекта, требует определенного уровня освещенности на том участке, где эта деятельность осуществляется. Обычно чем сильнее затруднено зрительное восприятие, тем выше должен быть средний уровень освещенности.
Вместе с тем чрезмерная локальная яркость может вызывать ослепление. Когда в поле зрения попадает яркий источник света, глаз на какое-то время теряет способность различать предметы. Ослепление может быть прямым, когда оно вызвано нахождением ярких источников света в поле зрения, или отраженным, когда свет отражается от поверхностей с высоким коэффициентом отражения.
Человеческий глаз защищается от поражения слишком ярким светом с помощью мигательного рефлекса (приблизительно 0,16–0,18 с), поворота глаз и движения головы при воздействии яркого света. Для целей охраны здоровья величина реакции определяется в 0,25 с.
Для создания нормальной световой среды применяют различные системы освещения.
Различают следующие виды освещения.
Естественное освещение – освещение помещений светом, исходящим от неба (прямым или отраженным), проникающим через световые проемы в наружных ограждающих конструкциях. Подразделяется на боковое, верхнее и комбинированное. Нормируемой характеристикой является коэффициент естественной освещенности. Боковое естественное освещение – естественное освещение помещения через световые проемы в наружных стенах. Верхнее естественное освещение – естественное освещение помещения через фонари, световые проемы в стенах (в местах перепада высот здания). Комбинированное естественное освещение – сочетание верхнего и бокового естественного освещения.
Искусственное освещение – освещение помещений и других мест, где недостаточно естественного освещения. Подразделяется на рабочее, аварийное, охранное, дежурное, общее, местное и комбинированное. При необходимости часть светильников рабочего или аварийного освещения используется для дежурного освещения.
Рабочее освещение обеспечивают во всех помещениях, а также на участках открытых пространств, предназначенных для работы, прохода людей и движения транспорта. Для помещений, имеющих зоны с разными условиями естественного освещения и с разными режимами работы, предусматривается раздельное управление рабочим освещением.
Аварийное освещение – освещение объектов различного назначения, не прекращающееся или автоматически вводимое в действие при внезапном отключении рабочих (основных) источников света. Предназначено для обеспечения эвакуации людей или временного продолжения работы на объектах, где внезапное отключение освещения создает опасность травматизма или недопустимого нарушения технологического процесса. Подразделяется на освещение безопасности и эвакуационное освещение. Освещение безопасности – освещение, предусматриваемое на случай аварийного отключения рабочего освещения, в результате чего возможны: длительное нарушение технологического процесса; нарушение работы таких объектов, как электрические станции, узлы радио- и телевизионных передач и связи, диспетчерские пункты, насосные установки водоснабжения, канализации и теплофикации, установки вентиляции и кондиционирования воздуха в производственных помещениях, где недопустимо прекращение работ, и т.п.
Охранное освещение (при отсутствии специальных технических средств охраны) предусматривается вдоль границ территорий, охраняемых в ночное время. Могут использоваться любые источники света, за исключением случаев, когда охранное освещение автоматически включается только при срабатывании охранной сигнализации или других технических средств. В таких случаях применяются лампы накаливания.
Дежурное освещение – освещение в нерабочее время. Область применения, величины освещенности, равномерность и требования к качеству не нормируются.
Общее освещение – освещение, при котором светильники размещаются в верхней зоне помещения равномерно (общее равномерное освещение) или применительно к расположению оборудования (общее локализованное освещение).
Местное освещение – освещение, дополнительное к общему, создаваемое светильниками, концентрирующими световой поток непосредственно на рабочих местах.
Комбинированное освещение – освещение, при котором к общему освещению добавляется местное.
Совмещенное освещение – освещение, при котором недостаточное по нормам естественное освещение дополняется искусственным.
Эвакуационное освещение – освещение для эвакуации людей из помещений при аварийном отключении нормального освещения. Такое освещение (в помещениях или в местах производства работ вне зданий) следует предусматривать:
- в местах, опасных для прохода людей;
- в проходах и на лестницах, служащих для эвакуации людей, при числе эвакуирующихся более 50 человек;
- по основным проходам производственных помещений, в которых работают более 50 человек;
- на лестничных клетках жилых зданий высотой 6 этажей и более;
- в производственных помещениях с постоянно работающими в них людьми, где выход людей из помещения при аварийном отключении нормального освещения связан с опасностью травматизма из-за продолжения работы производственного оборудования;
- в помещениях общественных и вспомогательных зданий промышленных предприятий, если в помещениях могут одновременно находиться более 100 человек;
- в производственных помещениях без естественного света.
Источниками искусственного освещения являются газоразрядные лампы и лампы накаливания.
Газоразрядные лампы предпочтительнее для применения в системах искусственного освещения. Световой поток от газоразрядных ламп по спектральному составу близок к естественному освещению и поэтому более благоприятен для зрения. Однако газоразрядные лампы имеют существенные недостатки, к числу которых относится пульсация светового потока. При рассмотрении быстро движущихся или вращающихся деталей в пульсирующем световом потоке возникает стробоскопический эффект, который проявляется в искажении зрительного восприятия объектов (вместо одного предмета видны изображения нескольких, искажаются направление и скорость движения).
В системах производственного освещения применяют люминесцентные газоразрядные лампы, имеющие форму цилиндрической стеклянной трубки. Внутренняя поверхность трубки покрыта тонким слоем люминофора, который преобразует ультрафиолетовое излучение газового электрического разряда в видимый свет. Люминесцентные газоразрядные лампы в зависимости от применяемого в них люминофора создают различный спектральный состав света. Различают несколько типов ламп: дневного света (ЛД), дневного света с улучшенной цветопередачей (ЛДЦ), холодного белого (ЛХБ), теплого белого (ЛТБ) и белого света (ЛБ).
Кроме люминесцентных газоразрядных ламп (низкого давления), в производственном освещении применяют газоразрядные лампы высокого давления:
- лампы ДРЛ (дуговые ртутные люминесцентные);
- галогенные лампы ДРИ (дуговые ртутные с йодидами);
- ксеноновые лампы ЛКсТ (дуговые ксеноновые трубчатые), которые в основном применяются для освещения территорий предприятия;
- натриевые лампы ДНаТ (дуговые натриевые трубчатые), используемые для освещения цехов с большой высотой (в частности, многих литейных цехов).
Применяются для освещения производственных помещений также лампы накаливания, в которых свечение возникает путем нагревания нити накала до высоких температур. Они просты и надежны в эксплуатации. Недостатками их являются низкая световая отдача (не более 20 лм/Вт), ограниченный срок службы (до 1000 ч), преобладание излучения в желто-красной части спектра, что искажает цветовое восприятие.
В осветительных системах используют лампы накаливания различных типов:
- вакуумные (НВ);
- газонаполненные биспиральные (НБ);
- биспиральные с криптоноксеноновым наполнением (НБК);
- зеркальные с диффузно отражающим слоем и др.
Все большее распространение получают лампы накаливания с йодным циклом – галоидные лампы, которые имеют лучший спектральный состав света и хорошие экономические характеристики.
Качественные показатели освещения в производственных помещениях во многом определяются правильным выбором светильников, представляющих собой совокупность источника света и осветительной арматуры. Основное назначение светильников заключается в перераспределении светового потока источников света в требуемых для освещения направлениях, механическом креплении источников света и подводе к ним электроэнергии, а также защите ламп, оптических и электрических элементов от воздействия окружающей среды.

 


 

3.3.6. Лазерное излучение

В настоящее время в самых разных производствах и для разнообразных целей (в медицине и для зрелищных мероприятий) все шире применяются лазеры – устройства с когерентным, почти не рассеивающимся пучком излучения.
В зависимости от типа конструкции и целевого назначения лазеров и лазерных установок на работников могут воздействовать следующие опасные и вредные факторы:
- собственно лазерное излучение (прямое, отраженное и рассеянное);
- сопутствующие ультрафиолетовое, видимое и инфракрасное излучения от источников накачки, плазменного факела и материалов мишени;
- токсические газы и пары от лазерных систем с прокачкой, хладагентов и др.;
- продукты взаимодействия лазерного излучения с обрабатываемыми материалами;
- повышенная температура поверхностей лазерного изделия;
- опасность взрыва в системах накачки лазеров.
- высокое напряжение в цепях управления и источниках электропитания;
- электромагнитное излучение промышленной частоты и радиочастотного диапазона;
- рентгеновское излучение от газоразрядных трубок и других элементов, работающих при анодном напряжении более 5 кВ;
- шум;
- вибрация.
В зависимости от типа конструкции и целевого назначения лазеров и лазерных установок на работников могут воздействовать следующие опасные и вредные факторы:
- собственно лазерное излучение (прямое, отраженное и рассеянное);
- сопутствующие ультрафиолетовое, видимое и инфракрасное излучения от источников накачки, плазменного факела и материалов мишени;
- токсические газы и пары от лазерных систем с прокачкой, хладагентов и др.;
- продукты взаимодействия лазерного излучения с обрабатываемыми материалами;
- повышенная температура поверхностей лазерного изделия;
- опасность взрыва в системах накачки лазеров.
- высокое напряжение в цепях управления и источниках электропитания;
- электромагнитное излучение промышленной частоты и радиочастотного диапазона;
- рентгеновское излучение от газоразрядных трубок и других элементов, работающих при анодном напряжении более 5 кВ;
- шум;
- вибрация.
При эксплуатации и разработке лазеров необходимо также учитывать возможность взрывов и пожаров при попадании лазерного излучения на горючие материалы.
Биологические эффекты воздействия лазерного излучения на организм определяются механизмами взаимодействия излучения с тканями (тепловой, фотохимический, ударно-акустический и др.) и зависят от длины волны излучения, длительности импульса (воздействия), частоты следования импульсов, площади облучаемого участка, а также от биологических и физико-химических особенностей облучаемых тканей и органов.
Лазерное излучение с длиной волны от 380 до 1400 нм наибольшую опасность представляет для сетчатой оболочки глаза, а излучение с длиной волны от 180 до 380 нм и свыше 1400 нм – для передних сред глаза. Повреждение кожи может быть вызвано лазерным излучением любой длины волны спектрального диапазона (180-510 нм).
По степени опасности генерируемого излучения лазеры подразделяются на четыре класса.
К лазерам I класса относят полностью безопасные лазеры, то есть такие лазеры, выходное коллимированное излучение которых не представляет опасности при облучении глаз и кожи.
Лазеры II класса – это лазеры, выходное излучение которых представляет опасность при облучении кожи или глаз человека коллимированным пучком; однако диффузно отраженное излучение безопасно как для кожи, так и для глаз.
К лазерам III класса относятся такие лазеры, выходное излучение которых представляет опасность при облучении глаз не только коллимированным, но и диффузно отраженным излучением на расстоянии 10 см от отражающей поверхности и (или) при облучении кожи коллимированным излучением. При этом диффузно отраженное излучение не представляет опасности для кожи. Этот класс вводится для лазеров, генерирующих излучение в определенном спектральном диапазоне.
Четвертый (IV) класс включает лазеры, диффузно отраженное излучение которых представляет опасность для глаз и кожи на расстоянии 10 см от отражающей поверхности.
Классифицирует лазеры предприятие-изготовитель.
Дозиметрический контроль лазерного излучения заключается в оценке характеристик его способности вызывать биологические эффекты в их сопоставлении с нормируемыми величинами.
Следует различать 2 формы дозиметрического контроля:
- предупредительный (оперативный) дозиметрический контроль;
- индивидуальный дозиметрический контроль.
Предупредительный дозиметрический контроль заключается в определении максимальных уровней энергетических параметров лазерного излучения в точках на границе рабочей зоны.
Индивидуальный дозиметрический контроль заключается в измерении уровней энергетических параметров излучения, воздействующего на глаза (кожу) конкретного работника в течение рабочего дня.
Предупредительный дозиметрический контроль проводится в соответствии с регламентом, утвержденным работодателем, но не реже одного раза в год в порядке текущего контроля, а также в следующих случаях:
- при приемке в эксплуатацию новых лазерных изделий II-IV классов;
- при внесении изменений в конструкцию действующих лазерных изделий;
- при изменении конструкции средств коллективной защиты;
- при проведении экспериментальных и наладочных работ;
- при аттестации рабочих мест;
- при организации новых рабочих мест.
Для проведения дозиметрического контроля работодатель назначает специальное лицо из числа инженерно-технических работников. Одновременно должна быть разработана должностная инструкция, определяющая его права и обязанности. Лицо, назначенное для проведения дозиметрического контроля, должно пройти специальное обучение.
Кроме того, при эксплуатации лазерных изделий II-IV класса назначается инженерно-технический работник, прошедший специальное обучение, отвечающий за обеспечение безопасных условий работы.
Лазерные изделия III-IV класса до начала их эксплуатации должны быть приняты комиссией. Комиссия устанавливает выполнение требований безопасной эксплуатации, решает вопрос о вводе лазерных изделий в эксплуатацию. Решение комиссии оформляется актом.
Безопасность на рабочих местах при эксплуатации лазерных изделий должна обеспечиваться конструкцией изделия.
Для предотвращения пожара при эксплуатации лазерных изделий IV класса в качестве ограничителей следует применять хорошо охлаждаемые неплоские металлические мишени или огнеупорные материалы достаточной толщины. При этом следует соблюдать осторожность, так как оплавление этих материалов может приводить к зеркальному отражению излучения.
Безопасность при работе с открытыми лазерными изделиями обеспечивается путем применения средств индивидуальной защиты.
Персонал, допускаемый к работе с лазерными изделиями, обязан пройти инструктаж и специальное обучение безопасным приемам и методам работы. Лица, временно привлекаемые к работе с лазерами, должны быть ознакомлены с инструкцией по технике безопасности и производственной санитарии при работе с лазерами и прикреплены к ответственному лицу из постоянного персонала подразделения.
Персоналу запрещается:
- осуществлять наблюдение прямого и зеркально отраженного лазерного излучения при эксплуатации лазеров II-IV класса без средств индивидуальной защиты;
- размещать в зоне лазерного пучка предметы, вызывающие его зеркальное отражение, если это не связано с производственной необходимостью.
Персонал, связанный с обслуживанием и эксплуатацией лазеров, должен проходить предварительные и периодические медицинские осмотры 1 раз в год. При этом обследование глаз должно выполняться специально подготовленными офтальмологами с обязательным включением дополнительных методов исследований.

 


 

3.3.7. Неионизирующие излучения

Распространение через вещество электромагнитных полей является потенциально опасным для человека. Электромагнитные поля разной частоты несут разную энергию и по-разному действуют на вещество биологических тканей организма человека.
Спектр электромагнитных излучений включает в себя высокочастотные энергетически мощные ионизирующие излучения (гамма-излучение, рентгеновские лучи). Затем идут ультрафиолетовое излучение, видимый свет и инфракрасное излучение. За ними располагается широкий диапазон радиочастот, включающий (в нисходящем порядке) микроволны, сотовую радиотелефонию, телевидение, коротковолновое радио, средне- и длинноволновое радио, короткие волны, использующиеся в диэлектрических и индукционных нагревателях, и поля токов так называемой промышленной частоты (50 либо 60 Гц).
Ультрафиолетовое излучение представляет собой форму оптического излучения с более короткой длиной волны и большей энергией фотонов (частиц излучения), чем видимый свет. Обычно ультрафиолетовое излучение невидимо и может быть обнаружено по свечению ряда материалов под его действием.
Общеизвестное действие ультрафиолетового излучения состоит в эритеме, или “солнечном ожоге”, проявляющемся в виде покраснения кожи обычно через 4–8 ч после воздействия ультрафиолетового излучения и постепенно бледнеющем после нескольких дней. Серьезный солнечный ожог может повлечь за собой образование пузырей на коже и ее шелушение.
В качестве мер защиты от ультрафиолета Солнца должна применяться специальная одежда и шляпы с полями для защиты лица и шеи. Для уменьшения уровня воздействия на открытые поверхности тела могут наноситься солнцезащитные кремы (работающие как “экраны”).
В процессе работы в помещениях работники сталкиваются с ультрафиолетовым излучением дуги электросварки и при использовании специальных искусственных источников ультрафиолетового излучения.
В результате воздействия ультрафиолетового излучения на глаза человека в течение нескольких часов могут возникнуть острые воспалительные реакции, обычно длящиеся несколько дней.
Долговременное воздействие ультрафиолетового излучения (в течение десятилетий) может внести свой вклад в возникновение катаракты.
Поэтому при проведении сварки обязательна защита глаз и кожи средствами индивидуальной защиты.
Инфракрасное излучение, часто называемое тепловым излучением, или лучистым теплом, испускается всеми телами. Оно становится существенным при высокой температуре поверхности тела (горячие двигатели, расплавленный металл и другие источники, связанные с литейным производством, термически обработанные поверхности, электрические лампы накаливания, системы выработки лучистого тепла и т.д.).
Естественная защитная реакция глаз, прекращающая рассматривание источников яркого света в 0,25 секунд, не срабатывает для инфракрасного излучения, не обладающего соответствующим зрительным раздражителем. Поэтому глаз не чувствует нагрева, что приводит к его неблагоприятному воздействию, особенно на хрусталик глаза и сетчатку.
При интенсивном инфракрасном излучении, связанном, как правило, с использованием лазеров или с очень сильными источниками излучения (ксеноновая дуга), могут возникнуть термические повреждения глаз. При этом в слепом пятне сетчатки возникает местный ожог (скотома).
При длительном воздействии инфракрасного излучения с длинами волн приблизительно 800–3000 нм возможно помутнение хрусталика (катаракта).
Для предотвращения возникновения этих повреждений должны применяться средства индивидуальной защиты для глаз.
Для защиты от теплового действия инфракрасного излучения применяют экранирование и специальную одежду.
В пределе нулевой частоты электромагнитное поле расщепляется на статические электрическое и магнитное поля. Накапливающиеся электрические заряды (статическое электричество) при разряде могут вызвать взрыв и/или пожар, нарушить технологию; они неприятны для человека.
При организации технологических процессов защита персонала от воздействия неионизирующих излучений достигается путем проведения комплекса организационных, инженерно-технических мероприятий, а также использования средств индивидуальной защиты.
При технологических процессах, связанных с воздействием на персонал статических электрических полей, защита обеспечивается путем заземления или экранирования источников поля или работающего, применения нейтрализаторов, антистатических препаратов, увлажнения легко электризующихся материалов или замены их на неэлектризующиеся, использования средств индивидуальной защиты (антистатическая обувь, одежда). Также для защиты от действия статического электричества, кроме средств коллективной защиты, применяются специальные “антистатические” средства индивидуальной защиты типа слаботокопроводящей одежды и обуви, не позволяющих скапливаться зарядам большой мощности;
При работах с источниками постоянных магнитных полей ограничение неблагоприятного влияния фактора достигается путем использования манипуляторов, захватов из немагнитных материалов, автоматизации и механизации производственных процессов, организации хранения и переноски магнитов и намагниченных изделий в специальной таре из немагнитных материалов, или “ярмах”.
При контактно-сварочных работах для защиты персонала от воздействия магнитных (или электромагнитных) полей промышленной частоты используются безындукционные кабели, экранирование элементов оборудования, являющихся источниками излучений, дистанционное управление, автоматизация и роботизация технологических процессов;
При работах на открытых распределительных устройствах и линиях электропередач высокого и сверхвысокого напряжения для защиты персонала следует применять стационарные, передвижные и переносные экраны, а также индивидуальные экранирующие комплекты одежды.
В физиотерапевтических кабинетах для защиты медперсонала используется рациональное размещение аппаратуры, экранирование источников излучения (экранированные кабины, экранирующие шторы), дистанционное управление, автоматизация процессов включения и выключения аппаратов.
При работах, связанных с воздействием на работающих инфракрасного и ультрафиолетового излучения, защита обеспечивается путем организации дистанционного управления процессами и оборудованием, экранирования источников излучения, применения средств индивидуальной защиты. Выбор материалов для экранов определяется требуемой эффективностью защиты и спектральной характеристикой излучения.

 


 

3.3.8. Ионизирующие излучения и защита от них

Ионизирующим излучением называют потоки корпускул (элементарных частиц) и потоки фотонов (квантов электромагнитного поля), которые при движении через вещество ионизируют его атомы и молекулы.
Наиболее известны альфа-частицы (представляющие собой ядра гелия и состоящие из двух протонов и двух нейтронов), бета-частицы (представляющие собой электрон) и гамма-излучение (представляющее собой кванты электромагнитного поля определенного диапазона частот).
Дуализм “частица – волна” квантового мира позволяет говорить об альфа-излучении и бета-излучении. Ионизирующими являются также рентгеновское, тормозное и космическое излучения, потоки протонов, нейтронов и позитронов.
Биологическое действие ионизирующего излучения заключается в том, что поглощенная веществом энергия проходящего через него излучения расходуется на разрыв химических связей атомов и молекул, что нарушает нормальное функционирование клеток живой ткани.
Различают следующие эффекты воздействия ионизирующего излучения на организм человека: соматические – острая лучевая болезнь, хроническая лучевая болезнь, местные лучевые поражения; сомато-стохастические (злокачественные опухоли, нарушения развития плода, сокращение продолжительности жизни) и генетические (генные мутации, хромосомные аберрации).
Если источники радиоактивного излучения находятся вне организма человека и тем самым человек облучается снаружи, то говорят о внешнем облучении.
Если радиоактивные вещества, находящиеся в воздухе, пище, воде, попадают внутрь организма человека, то источники радиоактивного излучения оказываются внутри организма и свидетельствуют о внутреннем облучении.
Обеспечение радиационной безопасности требует комплекса многообразных защитных мероприятий, зависящих от конкретных условий работы с источниками ионизирующих излучений, а также от типа источника.
Все работы с источниками радиоактивных излучений подразделяют на два вида: работу с закрытыми источниками ионизирующих излучений и работу с открытыми радиоактивными источниками.
Закрытыми источниками ионизирующих излучений называются любые источники, устройство которых исключает попадание радиоактивных веществ в воздух рабочей зоны. Открытые источники ионизирующих излучений способны загрязнять воздух рабочей зоны.
Главной опасностью закрытых источников ионизирующих излучений является внешнее облучение, определяемое видом излучения, активностью источника, плотностью потока излучения и создаваемой им дозой облучения и поглощенной дозой.
Основные принципы обеспечения радиационной безопасности: уменьшение мощности источников до минимальных величин (защита количеством); сокращение времени работы с источниками (защита временем); увеличение расстояния от источника до работающих (защита расстоянием) и экранирование источников излучения материалами, поглощающими ионизирующие излучения (защита экранами).
Защита количеством подразумевает проведение работы с минимальными количествами радиоактивных веществ, в итоге пропорционально сокращается мощность излучения.
Защита временем основана на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала.
Защита расстоянием – достаточно простой и надежный способ защиты от излучений. Это связано со способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и молекулами, что в конечном итоге приводит к снижению дозы облучения персонала.
Защита экранами – наиболее эффективный способ защиты изготовления экранов применяют различные материалы, а их толщина определяется мощностью излучения.
По своему назначению защитные экраны условно разделяются на пять групп:
1) защитные экраны-контейнеры, в которые помещаются радиоактивные препараты; они широко используются при транспортировке радиоактивных веществ и источников излучений;
2) защитные экраны для оборудования; в этом случае экранами полностью окружают все рабочее оборудование при нахождении радиоактивного препарата в рабочем положении или при включении высокого (или ускоряющего) напряжения на источнике ионизирующей радиации;
3) передвижные защитные экраны; этот тип защитных экранов применяется для защиты рабочего места на различных участках рабочей зоны;
4) защитные экраны, монтируемые как части строительных конструкций (стены, перекрытия полов и потолков, специальные двери и т.д.); такой вид защитных экранов предназначается для защиты помещений, в которых постоянно находится персонал, и прилегающей территории;
5) экраны индивидуальных средств защиты (щиток из оргстекла, смотровые стекла пневмокостюмов, просвинцованные перчатки и др.).
Защита от открытых источников ионизирующих излучений предусматривает как защиту от внешнего облучения, так и защиту персонала от внутреннего облучения, связанного с возможным проникновением радиоактивных веществ в организм через органы дыхания, пищеварения или через кожу.
Все виды работ с открытыми источниками ионизирующих излучений разделены на три класса. Чем выше класс выполняемых работ, тем жестче гигиенические требования по защите персонала от внутреннего переоблучения.
Способы защиты персонала при этом следующие:
1) использование принципов защиты, применяемых при работе с источниками излучения в закрытом виде;
2) герметизация производственного оборудования с целью изоляции процессов, которые могут явиться источниками поступления радиоактивных веществ во внешнюю среду;
3) мероприятия планировочного характера. Планировка помещений предполагает максимальную изоляцию работ с радиоактивными веществами от других помещений и участков, имеющих иное функциональное назначение. Помещения для работ I класса должны размещаться в отдельных зданиях или изолированной части здания, имеющей отдельный вход. Помещения для работ II класса должны размещаться изолированно от других помещений; работы III класса могут проводиться в отдельных специально выделенных комнатах;
4) применение санитарно-гигиенических устройств и оборудования, использование специальных защитных материалов;
5) использование средств индивидуальной защиты персонала. Все средства индивидуальной защиты, используемые для работы с открытыми источниками, разделяются на пять видов: спецодежда, спецобувь, средства защиты органов дыхания, изолирующие костюмы, дополнительные защитные приспособления;
6) выполнение правил личной гигиены. Эти правила предусматривают личностные требования к работающим с источниками ионизирующих излучений: запрещение курения в рабочей зоне, тщательная очистка (дезактивация) кожных покровов после окончания работы, проведение дозиметрического контроля загрязнения спецодежды, спецобуви и кожных покровов. Все эти меры предполагают исключение возможности проникновения радиоактивных веществ внутрь организма.
Допустимые уровни воздействия ионизирующего излучения на человека регламентируются СП 2.6.1.758-99 “Нормами радиационной безопасности – 99” (НРБ-99).
Требования по защите людей от радиационного воздействия источников ионизирующего излучения определяются документом СП 2.6.1.799-99 “Основные санитарные правила обеспечения радиационной безопасности – 99” (ОСПОРБ-99).
Технические требования по защите от ионизирующих излучений содержатся в ГОСТ 12.4.120-83 “Средства коллективной защиты от ионизирующих излучений. Общие технические требования”.